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Dispersion curves employed for designing Love wave based liquid sensing devices may provide
more accurate information if due consideration is given to parameters describing microstruc-
tural behavior of the substrate. The present study involves mathematical modelling of Love
waves propagating in a hybrid structure consisting of an elastic layer in the middle overlying
a size dependent substrate, loaded with a viscous liquid (Newtonian) half space. Numerical
computations are carried out to graphically demonstrate the effects of various parameters:
characteristic length of the substrate, thickness of the elastic layer, viscosity and density of
the overlying viscous liquid (Newtonian) on dispersion characteristics.
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1. Introduction

Due to shear horizontal particle displacements, Love-type wave based devices can operate effec-
tively both in liquid and gas environments. So these devices are being used as viscosity sensors,
bio sensors and chemical sensors (Vellekoop, 1998; Wang et al., 2008). The application of surface
acoustic waves (SAW) for nondestructive diagnostics of layered media was presented by Kuznet-
sov (2010). For detection of analytes in liquid, SAW Love mode sensors with high sensitivity
were used (Rocha-Gaso et al., 2009). To enhance the performance of conventional SAW devices
based on such periodic wave guiding layers, several structure models were reviewed (Xu and
Yuan, 2018). These Love-type wave based devices consist of an elastic layer bonded to an elastic
substrate. Due to the difference in mechanical properties of the substrate, the layer acoustic
energy gets entrapped near the surface causing penetration of the wave in the substrate. Due
to in-plane behavior of the Love wave propagation, a larger part of the wave is confined in the
guiding layer only, thus enhancing sensitivity of the device. Many researchers have studied the
influence of an inviscid liquid on acoustic waves propagating in elastic materials (Sharma and
Kumar, 2018; Kim, 1992; Guo and Sun, 2008). Kielczynski et al. (2012) studied the effect of a
viscous liquid loading on the Love wave propagation. Baroi et al. (2018) studied propagation of
polarized shear horizontal waves in the viscous liquid layer resting over a porous piezoelectric
half-space. Vikstrom and Voinova (2016) investigated surface acoustic waves with horizontal po-
larization (SH-SAWs) propagating in a three-layer system consisting of an elastic substrate and
two viscoelastic overlayers. The effect of gravity, heterogeneity and internal friction on propa-
gation of SH-waves (horizontally polarised shear waves) in a viscoelastic layer over a half-space
was studied by Sahu et al. (2014).
For designing of Love-type wave based devices the obtained dispersion relation is very im-

portant. This relation provides phase velocity of the wave in terms of guiding layer thickness
and physical properties of the substrate and layer. Different researchers have provided disper-
sion curves for one or more layers on a substrate. However, ignoring the size dependence of
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the substrate may lead to less valid results. Therefore, for designing more efficient Love-type
wave based devices, a general dispersion relation is needed by considering the size dependent
properties of the substrate. Models capturing the size effects have been provided by various
researchers (Gunther, 1958; Toupin 1962; Mindlin and Tiersten, 1962; Koiter, 1964; Eringen,
1968; Nowacki, 1974). All these models proposed an additional material length scale parameter
to address the size effects. Various reformulations have been applied to these elastic theories.
The consistent couple stress theory given by Hadjesfandiari and Dargush (2011) is attractive
because it is simple, relatively less complex due to a lesser number of length scale parameters.
This theory also claims to resolve all the inconsistencies in the Mindlin and Tiersten couple stress
theory (Mindlin and Tiersten, 1962) by discovering the skew symmetric character of the couple
stress tensor. The couple stress model considers one length scale parameter η called the couple
stress coefficient and two Lame parameters λ and µ. Further, η depends upon the characteristic
length parameter l. Using this model, various problems of wave propagation phenomena have
been discussed (Sharma and Kumar, 2014, 2017; Ghodrati et al., 2017).
Considering the merits of the size dependent model over the classical model, here we intend

to study the effect of a viscous fluid loading on the Love wave propagation in a layered struc-
ture with a substrate exhibiting microstructural properties. The effect of characteristic length
parameter l, viscosity parameter η1, density parameter ρ1 and thickness H of the sandwiched
layer are observed and plotted. The results obtained in this paper can be used significantly for
designing Love-type wave based devices in liquid-phase environments – a situation typical of
biosensors.

2. Formulation and solution of the problem

To model the present problem, we have considered a cartesian coordinate system in such a
way that the Love wave is propagating along x-axis and z-axis is considered positive in the
vertically downward direction. The wave guide surface is at z = −H and is loaded with a
viscous liquid (Newtonian) of viscosity η1 and density ρ1. The basic configuration supporting
propagation of the Love waves, consists of a finite layer which is deposited on the semi-infinite
substrate, and the shear wave velocity in the layer is less than that of the substrate. z = 0 is the
common interface in which the Love wave propagates. The hybrid structure consists of an elastic
surface lying over a couple stress half space with microstructural properties, characterized by an
additional material length scale parameter, characteristic length l, loaded with a viscous liquid
(Newtonian). The thickness of the elastic layer is H. The considered problem is two dimensional,
having no variation along the y-axis.
Let uei = (u

e
1, u
e
2, u
e
3) and u

c
i = (u

c
1, u
c
2, u
c
3) are the mechanical displacement components in

the middle elastic layer and the lower couple-stress half space, respectively, obtained due to
propagation of the Love wave. As the Love wave is propagating along the direction of x-axis, it
causes a displacement in the y-direction only. We shall assume that

ue1 = 0 ue2 = u
e
2(x, z, t) ue3 = 0

uc1 = 0 uc2 = u
c
2(x, z, t) uc3 = 0

(2.1)

2.1. Viscous liquid region (z < −H)

The Navier-Stokes equation for a viscous liquid (Newtonian) half space (z < −H) with
velocity field v2 (of the SH acoustic wave) is given by

∂v2
∂t
− η1
ρ1

(∂2v2
∂x2
+
∂2v2
∂z2

)

= 0 (2.2)

where η1 is viscosity and ρ1 is density of the viscous liquid (Newtonian).
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Fig. 1. Geometry of the problem

We assume the solution to (2.2) of the velocity field v2 in the viscous liquid be

v2(x, z, t) = V (z) exp[i(kx− ωt)] (2.3)

where ω is the angular frequency and k is the angular wave number.

Substitution of (2.3) into (2.2) gives

V ′′(z)−
(

k2 − iωρ1
η1

)

V (z) = 0 V ′′(z)− γ2V (z) = 0 (2.4)

where

γ =

√

k2 − iωρ1
η1

Re(γ) > 0

It should be Solving (2.4), we get

V (z) = A1 exp(γz) +B1 exp(−γz) (2.5)

where A1 and B1 are arbitrary constants.

With increasing distance from the wave guide surface z → −∞, the amplitude of the Love
wave decays to zero. The condition Re(γ) > 0 assures this phenomenon.

From (2.3) and (2.5), the final solution for the velocity component in the viscous liquid is

v2(x, z, t) = A1 exp(γz) exp[i(kx − ωt)] (2.6)

With the help of (2.6), the only shear stress component is given by

τ lyz = η1
∂v2
∂z
= A1η1γ exp(γz) exp[i(kx − ωt)] (2.7)
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2.2. Elastic surface layer (−H < z < 0)

The equation of motion in the absence of body forces for the elastic surface layer
(−H < z < 0) is given by

1

c21

∂2ue2
∂t2
=
∂2ue2
∂x2
+
∂2ue2
∂z2

(2.8)

where c1 =
√

µ2/ρ2 is bulk shear wave velocity in the layer.

We assume the solution to (2.8) of the mechanical displacement ue2 of the Love wave in the
elastic surface layer as

ue2(x, z, t) = f(z) exp[i(kx− ωt)] (2.9)

Substitution of (2.9) into (2.8) gives

f ′′(z) + p2f(z) = 0 (2.10)

where

p2 =
ω2

c21
− k2

Solution to this differential equation (2.10) is substituted into equation (2.9), then we get the
displacement component as

ue2(x, z, t) = [A2 cos(pz) +A3 sin(pz)] exp[i(kx− ωt)] (2.11)

where A2 and A3 are arbitrary constants.

The shear stress component will be given by

τ eyz = µ2
∂ue2
∂z
= [−A2 sin(pz) +A3 cos(pz)]µ2p exp[i(kx− ωt)] (2.12)

2.3. Couple stress layer (z > 0)

The basic governing equation of motion and the constitutive relation of couple stress theory
for an isotropic material in the absence of body forces (Hadjesfandiari and Dargush, 2011) are
given by

(λ+ µ+ η∇2)∇(∇ · uci )− (µ− η∇2)∇2uci = ρ
∂2uci
∂t2

τji = λu
c
k,kδij + µ(u

c
i,j + u

c
j,i)− η∇2(uci,j − ucj,i)

µji = 4η(ωi,j − ωj,i)

(2.13)

where

ωi =
1

2
ǫijku

c
k,j

Here uci are the displacement components. λ and µ are Lame constants, η = µl
2 is the couple

stress coefficient, l is characteristic length, ρ is density of the material. τji is the symmetric stress
tensor, δij is Kronecker’s delta and ǫijk is the permutation tensor, and i, j, k = 1, 2, 3.

Let us assume that uci = [0, u
c
2, 0] is the displacement vector and ∂/∂y ≡ 0.
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Imposing the above said conditions, equation of motion (2.13) becomes

∂2uc2
∂x2
+
∂2uc2
∂z2
− l2
(∂4uc2
∂x4
+ 2
∂4uc2
∂x2∂z2

+
∂4uc2
∂z4

)

=
1

c22

∂2uc2
∂t2

(2.14)

where c22 = µ/ρ.

Let us assume the solution to above equation (2.14) as

uc2(x, z, t) = g(z) exp[i(kx− ωt)] (2.15)

where ω = kc is the angular frequency, k is the wave number and c is the phase velocity.

Equation (2.14) reduces to

d4g(z)

dz4
− Sd

2g(z)

dz2
+ Pg(z) = 0 (2.16)

where

S =
1

l2
+ 2k2 P = k4 +

k2

l2
− ω

2

l2c22

Solution to the above differential equation becomes

f(z) = A4 exp(−αz) +A5 exp(−βz) (2.17)

where A4 and A5 are arbitrary constants

α =

√

S +
√
S2 − 4P
2

β =

√

S −
√
S2 − 4P
2

(2.18)

Hence, the displacement component is given by

uc2(x, z, t) = [A4 exp(−αz) +A5 exp(−βz)] exp[i(kx− ωt)] (2.19)

The shear stress component is given by

τ cyz = µ
∂uc2
∂z
+ η
( ∂3uc2
∂x2∂z

+
∂3uc2
∂z3

)

(2.20)

The couple stress component is given by

µcxz = 4η
(∂ω1
∂z
− ∂ω3
∂x

)

(2.21)

Using (2.19) in above equations (2.20) and (2.21), we get

τ cyz = [A4αp1 exp(−αz) +A5βq1 exp(−βz)] exp[i(kx − ωt)] (2.22)

where

p1 = −µ+ k2η − α2η q1 = −µ+ k2η − β2η

and

µcxz = −2η[A4(α2 − k2) exp(−αz) +A5(β2 − k2) exp(−βz)] exp[i(kx− ωt)] (2.23)
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3. Boundary conditions

The following are boundary conditions to be satisfied in the considered model for propagation
of the Love wave.
• Velocity components should be continuous at the interfacial surface

∂ue2
∂t
= v2 at z = −H (3.1)

• Continuity of the displacement components at the interface
ue2 = u

c
2 at z = 0 (3.2)

• The magnitude of the shear component of the stress tensor should be equal at the interface
τ lyz = τ

e
yz at z = −H

τ cyz = τ
e
yz at z = 0

(3.3)

• Couple stress of the substrate should vanish at the interface
µcxz = 0 at z = 0 (3.4)

4. Derivation of secular equation

Using the above mentioned boundary conditions from (3.1) to (3.4), we obtain the following
equations in terms of five unknown coefficients A1, A2, A3, A4 and A5 as

exp(−γH)A1 + iω cos(pH)A2 − iω sin(pH)A3 = 0
A2 −A4 −A5 = 0
η1γ exp(−γH)A1 − µ2p sin(pH)A2 − µ2p cos(pH)A3 = 0
µ2pA3 − αp1A4 − βq1A5 = 0
(α2 − k2)A4 + (β2 − k2)A5 = 0

(4.1)

To obtain a non-trivial solution, the determinant of the coefficients of the unknowns A1, A2, A3,
A4 and A5 should vanish. By solving the determinant, we get the following dispersion equation
for the Love wave in a sandwiched elastic layer loaded with a viscous liquid lying over a couple
stress substrate

µ2p cos(pH)[βq1(α
2 − k2)− αp1(β2 − k2)]− µ22p2 sin(pH)(β2 − α2)

+ η1γiω{sin(pH)[αp1(β2 − k2)− βq1(α2 − k2)]− µ2p cos(pH)(β2 − α2)} = 0
(4.2)

The real part of (4.2) gives the dispersion equation, and the imaginary part gives the damping
equation associated with the Love surface wave propagation. After separating the real and
imaginary parts of (4.2), we get the dispersion and damping equations as

(R3 + γ2R5)R1 − (R4 − γ2R6)R2 = 0
γ1(R5R1 +R6R2) = 0

(4.3)

where

R1 = βq1(α
2 − k2)− αp1(β2 − k2) R2 = µ2p(β

2 − α2)
R3 = µ2p cos(pH) R4 = µ2p sin(pH) R5 = η1ω sin(pH)

R6 = η1ω cos(pH) T =
ωρ1
η1

γ = γ1 + iγ2

γ1 =

√

T

2
+
k2

2
√
2T

γ2 = −
√

T

2
+
k2

2
√
2T
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5. Numerical results and discussion

Numerical simulations have been performed to analyze the theoretical results obtained in the
previous Sections. Following data has been taken into account for the graphical illustration:

(i) For the viscous liquid layer: (Kielczynski et al., 2012)
µ1 = 50Pas, ρ1 = 1.10

3 kg/m3.

(ii) For the elastic layer: (Kielczynski et al., 2012)
The thickness of the layer is assumed to be 0.4mm,
µ2 = 3.91 · 1010 N/m2, ρ2 = 8.9 · 103 kg/m3, c1 =

√

µ2/ρ2 = 3206.5m/s.

(iii) For the couple stress layer: (Sharma and Kumar, 2017)
µ = 30.5 · 109N/m2, ρ = 2717 kg/m3.

The graphs depicting the microstructural effects of the substrate, viscosity and density effects
of fluid loading and thickness effects of the sandwiched elastic layer are shown in Figs. 2-5 for
the dimensionless phase velocity c/c1 versus the dimensionless wave number kH. One common
feature among all profiles is that the phase velocity decreases with an increase in the wave
number.

5.1. Effect of microstructure

To better observe the dependence of the material length scale parameter over the Love wave
propagation, the dispersion curves are compared for different values of characteristic lengths as
shown in Fig. 2. It is pointed out by the researchers that it is not possible to find the exact

Fig. 2. Variation of the dimensionless phase velocity c/c1 against the dimensionless wave number kH for
different values of the characteristic length l

value of the characteristic length. It is of the order of cell size of the considered material. The
profile has been plotted by taking the characteristic length to be of the order of 10−4. We
have considered the viscosity and density of the viscous liquid (Newtonian) as η1 = 50Pas
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and ρ1 = 1000 kg/m
3, respectively. The thickness of the sandwiched elastic layer is taken as

H = 0.0004m. It is observed that the characteristic length of the material significantly affects
the phase velocity profiles. As the characteristic length parameter l increases, the phase velocity
profiles of the Love wave increases.

5.2. Effect of fluid viscosity

The effect of the fluid viscosity is depicted in Fig. 3. The dispersion curves are plotted for
different values of the coefficient of the viscosity parameter η1. Here, characteristic length of the
material is fixed, i.e. l = 0.0001m, and thickness of the elastic layer is taken as H = 0.0004m.
The density of the viscous liquid is also fixed i.e. ρ1 = 1000 kg/m

3. It is observed that the
viscosity parameter disfavors the phase velocity. As the viscosity of the material is increasing,
the phase velocity of the Love waves decreases.

Fig. 3. Variation of the dimensionless phase velocity c/c1 against the dimensionless wave number kH for
different values of the coefficient of viscosity η1

5.3. Effect of thickness of sandwiched elastic layer

The effect of thickness of the sandwiched elastic layer on the Love wave propagation in
a hybrid structure consisting of an elastic layer in the middle overlying a semi infinite size
dependent couple stress substrate loaded with a viscous liquid (Newtonian) half space is shown
in Fig. 4. To capture this effect, we have considered different values of thickness H = 0.0006m,
0.0008m, 0.001m of the sandwiched elastic layer. Also we have considered the characteristic
length of the material as l = 0.0001m and the viscosity and density of the viscous (Newtonian)
liquid as η1 = 50Pas and ρ1 = 1000 kg/m

3, respectively. It is observed that with an increase in
thickness of the layer, the phase velocity decreases.
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Fig. 4. Variation of the dimensionless phase velocity c/c1 against the dimensionless wave number kl for
different values of thickness of the elastic layer H

Fig. 5. Variation of the dimensionless phase velocity c/c1 against the dimensionless wave number kH for
different values of density of the viscous liquid ρ1
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5.4. Effect of density of viscous liquid loading

To study the effect of the density parameter of the viscous liquid (Newtonian) on the velocity
profile, we considered density of the fluid ranging from 800 to 1000 kg/m3 for the viscosity
parameter η1 = 60Pas (Shah and Balasubramaniam, 2000). It can be seen from Fig. 5 that an
increase in density of the fluid leads to a decrease in the phase velocity.

6. Conclusions and applications

The analytical expression for the dispersion relation is obtained and results are graphically di-
splayed for propagation of the Love type wave in an elastic layer sandwiched between a couple
stress half space and a viscous liquid (Newtonian). The study involves a number of parameters
having significant effects on the velocity profile of the Love waves. It is observed that the velo-
city profiles are significantly affected by variation in the associated parameters. The following
conclusions are observed in the present study:

• The graphical representation reveals that the phase velocity increases with an increase in
the characteristic length parameter.

• The viscosity parameter has a reverse effect on the phase velocity. As the viscosity parame-
ter of the viscous liquid (Newtonian) increases, the phase velocity of the wave decreases.

• Thickness of the sandwiched elastic layer also disfavors the velocity profile of the wave. An
increase in thickness of the elastic layer leads to a decrease in phase velocity of the wave.

• Density of the viscous liquid (Newtonian) is also unfavorable to the velocity profile of the
Love wave. An increase in density of the viscous liquid (Newtonian) decreases the phase
velocity profile of propagation of the Love wave.

This study can be implemented in optimization of SAW devices and other liquid sensors. The
growing needs of microelectronics and other fields of modern technology require introduction
and development of methods of nondestructive analysis of multilayered materials. The basis of
these methods lies in acoustic waves, thermal or electromagnetic waves. The present analysis
considering microstructural properties of the substrate may provide more efficient applications
of the Love wave based devices designed for similar environments.
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